T-cell growth factor P40 promotes the proliferation of myeloid cell lines and enhances erythroid burst formation by normal murine bone marrow cells in vitro.

نویسندگان

  • D E Williams
  • P J Morrissey
  • D Y Mochizuki
  • P de Vries
  • D Anderson
  • D Cosman
  • H S Boswell
  • S Cooper
  • K H Grabstein
  • H E Broxmeyer
چکیده

T-cell growth factor P40 was examined for possible effects on murine interleukin-3 (IL-3)-dependent myeloid cell lines and freshly isolated murine bone marrow cells. The results showed that P40 stimulated the proliferation of some IL-3-dependent myeloid cell lines of both early myeloid and mast cell phenotype and synergized with IL-3. P40 did not promote proliferation of fresh bone marrow cells, bone marrow enriched for early myeloid cells by 5-fluorouracil treatment, or bone marrow derived mast cells as assessed in 3H-TdR incorporation assays. P40 did not influence the growth of murine colony-forming unit granulocyte-macrophage in agar cultures, either alone or in the presence of optimal or sub-optimal concentrations of CSF-1, GM-colony-stimulating factor, or IL-3. P40 did potentiate burst-forming unit-erythroid (BFU-E) formation in the presence of erythropoietin; however, this was dependent on the cell plating density, suggesting an indirect stimulation of BFU-E by P40. The indirect nature of P40 action on BFU-E was further demonstrated in cell separation experiments and indicated that the effect was mediated by T cells. These data expand the repertoire of cells that P40 influences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BIO treatment enhances rat marrow-derived mesenchymal stem cell in vitro proliferation and viability

Introduction: Previous investigations have indicated that the presence of BIO (6-Bromoindirubin-3-Oxime) in medium of some cell culture enhances the cell proliferation and viability. The aim of the present study was to investigate the BIO effects on in vitro expansion of rat marrow-derived mesenchymal stem cells (MSCs) culture. Methods: In the present experimental study, bone marrow cells from ...

متن کامل

Transforming growth factor beta selectively inhibits normal and leukemic human bone marrow cell growth in vitro.

The effects of transforming growth factor beta 1 or beta 2 (TGF-beta 1 or -beta 2) on the in vitro proliferation and differentiation of normal and malignant human hematopoietic cells were studied. Both forms of TGF-beta suppressed both the normal cellular proliferation and colony formation induced by recombinant human interleukin-3 (IL-3) and granulocyte-macrophage colony-stimulating factor (GM...

متن کامل

Matrigel Enhances in vitro Bone Differentiation of Human Marrow-derived Mesenchymal Stem Cells

Objective(s) The use of co-culture cells as well as extra cellular matrix are among those strategies that have been employed to direct mesenchymal stem cell (MSC) bone differentiation in culture. In this regard, there is no study considering the effects of Matrigel on mesenchymal stem cell (MSC) in vitro bone differentiation. This was the subject of the present study. Materials and Methods ...

متن کامل

Hemozoin Enhances Maturation of Murine Bone Marrow Derived Macrophages and Myeloid Dendritic Cells

Background: Falciparum malaria is a severe health burden worldwide. Antigen presenting cells are reported to be affected by erythrocytic stage of the parasite. Malarial hemozoin (HZ), a metabolite of malaria parasite, has adjuvant properties and may play a role in the induction of immune response against the parasite. Objective: To determine the immunological impact of hemozoin on the capacity ...

متن کامل

Platelet-derived growth factor promotes proliferation of erythropoietic progenitor cells in vitro.

To investigate serum requirements for optimal erythropoiesis in vitro, we studied the response of erythroid progenitor cell proliferation in culture to platelet-derived growth factor (PDGF). Human bone marrow cells cultured with platelet-poor plasma-derived serum (PDS) form fewer erythroid colonies than do cells cultured with human whole blood serum or fetal calf serum (P less than 0.05). Treat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 76 5  شماره 

صفحات  -

تاریخ انتشار 1990